Chapter 4

1. "Correlation analysis deals with the association between two or more variables." - Simpson & Kafka.
2. "Correlation analysis attempts to determine the 'degree of relationship' between variables." - Ya Lun Chou.
3. "Correlation is an analysis of the covariation between two or more variables." - A.M. Tuttle.

Karl Pearson's coefficient of correlation

   
[n å xy - (å x X å y)]
r =  
 
{[n å x2 - (å x)2] X [n å y2 - (å y)2]}

Where:
x = variable 1
y = variable 2
n = number of pair of scores
r = coefficient of linear correlation

Q. 1. Calculate the correlation coefficient for the following data: (June 2002)

x 8 12 15 20 24 27 32
y 30 24 36 44 56 64 72

Solution.

x y x2 y2 x X y
8 30 64 900 240
12 24 144 576 288
15 36 225 1296 540
20 44 400 1936 880
24 56 576 3136 1344
27 64 729 4096 1728
32 72 1024 5184 2304
å x = 138 å y = 326 å x2 = 3162 å y2 = 17124 å xy = 7324

Here, n = 7
   
[n å xy - (å x X å y)]
r =  
 
{[n å x2 - (å x)2] X [n å y2 - (å y)2]}

   
[(7 X 7324) - (138 X 326)]
or r =  
 
{[(7 X 3162) - (138)2] X [(7 X 17124) - (326)2]}

or r = 0.969

Note: Coefficient of correlation lies between +1 and -1.


Main Contents Page

© Universal Teacher Publications