y dx = (h/2) X {(y0 + yn ) + [2 X (y1 + y2 + y3 +....+ yn-1)]}

Q. 7. Evaluate

a) x2 dx (Dec. 99)
b) I =(1 + x2 + x3) dx (Dec. 2002)
using either Simpson's rule or Trapezoidal rule.

Solution. (a)

Using Trapezoidal rule

x 1 1.05
1.10
1.15
1.20
1.25
1.30
y = x2 1 1.1025
1.21
1.3225
1.44
1.5625
1.69


Here, h = 0.05, y0 = 1, y1 = 1.1025, y2 = 1.21, y3 = 1.3225, y4 = 1.44, y5 = 1.5625, y6 = 1.69
y dx = (h/2) X {(y0 + y6 ) + [2 X (y1 + y2 + y3 + y4 + y5)]}
or y dx = (0.05/2) X {(1 + 1.69) + [2 X (1.1025 + 1.21 + 1.3225 + 1.44 + 1.5625)]}
or y dx = 0.3991

(b) Using Trapezoidal rule

x

1

2

3

y = (1 + x2 + x3)

3

13

37

Here, h = 1, y0 = 3, y1 = 13, y2 = 37
y dx = (h/2) X [(y0 + y2 ) + (2 X y1)]

y dx = (1/2) X [(3 + 37) + (2 X 13)]
or y dx = 33

Q. 8. Compute the approximate value of the integral
I =(x + x2) dx
using Trapezoidal rule by taking interval size h as one.

Solution.

x 0 1 2
y = (x + x2) 0 2 6

y dx = (1/2) X [(0 + 6) + (2 X 2)]
ory dx = 5



Main Contents Page

© Universal Teacher Publications