(x - x1)(x - x2)....(x - xn)
 
(x - x0)(x - x2)....(x - xn)
 
f(x) =
  f(x0) +
  f(x1) +
 
(x0 - x1)(x0 - x2).....(x0 - xn)
 
(x1 - x0)(x1 - x2).....(x1 - xn)
 
         
     
(x - x0)(x - x1)....(x - xn-1)
 
    ............
  f(xn)
     
(xn - x0)(xn - x1)......(xn - xn-1)
 

f(x) = f(x0) + (x - x0)Df(x0) + (x - x0)(x - x1)D2f(x0) + (x - x0)(x - x1)(x - x2)D3f(x0) + ..........

Q. 9. A table of x versus f(x) is given below. Using any one of the interpolation formulae (Lagrange's/Newton's etc.), find the value of f(x) at x = 4 : (June 1999)

x 1.5 3 6
f(x) -0.25 2 20


Solution. Given, x = 4, x0 = 1.5, x1 = 3, x2 = 6, f(x0) = -0.25, f(x1) = 2, f(x2) = 20

Using Lagrange’s Formula

 
(x - x1)(x - x2)
 
(x - x0)(x - x2)
 
(x - x0)(x - x1)
 
f(x) =
  f(x0) +
  f(x1) +
  f(x2)
 
(x0 - x1)(x0 - x2)
 
(x1 - x0)(x1 - x2)
 
(x2 - x0)(x2 - x1)
 

 
(4 - 3)(4 - 6)
 
(4 - 1.5)(4 - 6)
 
(4 - 1.5)(4 - 3)
 
f(4) =
  X (-0.25) +
  X (2) +
  X (20)
 
(1.5 - 3)(1.5 - 6)
 
(3 - 1.5)(3 - 6)
 
(6 - 1.5)(6 - 3)
 

or f(4) = 6 (approx.)

Using Newton's Divided Difference Formula

The difference table is shown below:

x f(x) Df(x) D2f(x)
1.5 -0.25 [2 - (-0.25)]/(3 - 1.5) = 1.5

(20 - 2)/(6 - 3) = 6
(6 - 1.5)/(6 - 1.5) = 1
3 2
6 20

Here, Df(x0) = 1.5, D2f(x0) = 1

f(x) = f(x0) + (x - x0)Df(x0) + (x - x0)(x - x1)D2f(x0)
f(4) = (-0.25) + [(4 - 1.5) X 1.5] + [(4 - 1.5) X (4 - 3) X 1]
or f(4) = 6



Main Contents Page

© Universal Teacher Publications