Q. 10. Using any one of the interpolation formulae (e.g., Lagrange's/Newton's etc.) and the following table, find the value of f(x) at x = 3.5 : (Dec. 2000)

x 1 2 5 6
f(x) 1.2 4.8 26 39

Solution. Given, x = 3.5, x0 = 1, x1 = 2, x2 = 5, x3 = 6, f(x0) = 1.2, f(x1) = 4.8, f(x2) = 26, f(x3) = 39

Using Lagrange’s Formula

 
(3.5 - 2)(3.5 - 5)(3.5 - 6)
 
(3.5 - 1)(3.5 - 5)(3.5 - 6)
 
f(3.5) =
  X (1.2) +
  X (4.8) +
 
(1 - 2)(1 - 5)(1 - 6)
 
(2 - 1)(2 - 5)(2 - 6)
 
         
 
(3.5 - 1)(3.5 - 2)(3.5 - 6)
 
(3.5 - 1)(3.5 - 2)(3.5 - 5)
 
 
  X (26) +
  X (39)
 
(5 - 1)(5 - 2)(5 - 6)
 
(6 - 1)(6 - 2)(6 - 5)
 

or f(3.5) = 12.7563

Q. 11. The following values of the function f(x) for value of x are given :
f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4
Using Newton's Divided Difference Formula or Lagrange’s Formula, find the value of f(6). (Dec. 99)

Solution. Given, x = 6, x0 = 1, x1 = 2, x2 = 7, x3 = 8, f(x0) = 4, f(x1) = 5, f(x2) = 5, f(x3) = 4

Using Newton's Divided Difference Formula

The difference table is shown below:

x f(x) Df(x) D2f(x) D3f(x)
1 4 (5 - 4)/(2 - 1) = 1
(5 - 5)/(7 - 2) = 0
(4 - 5)/(8 - 7) = -1
(0 - 1)/(7 - 1) = -1/6
(-1 - 0)/(8 - 2) = -1/6
0
2 5
7 5
8 4


Here, Df(x0) = 1, D2f(x0) = -1/6, D3f(x0) = 0

f(x) = f(x0) + (x - x0)Df(x0) + (x - x0)(x - x1)D2f(x0) + (x - x0)(x - x1)(x - x2)D3f(x0)
f(6) = 4 + [(6 - 1) X 1] + [(6 - 1) X (6 - 2) X (-1/6)] + [(6 - 1) X (6 - 2) X (6 - 7) X 0]
or f(6) = 5.66



Main Contents Page

© Universal Teacher Publications