(Derivatives at mid or near mid)

 
(y0 + y1)
 
(2u - 1)
 
+
[u(u - 1)]
(D2y-1 + D2y0)
yu =
+

   X (Dy0)
X

+
 
2
 
2
 
2!
2
                               
{u[u - (1/2)](u - 1)}
 
[u(u2 - 1)(u - 2)]
 
(D4y-2 + D4y-1)

   X (D3y-1)
+
X

3!
 
4!
 
2

+
{u[u - (1/2)](u2 - 1)(u - 2)}
 
[u(u2 - 1)(u2 - 2)(u - 3)]
 
(D6y-3 + D6y-2)
+ ...

   X (D5y-2)
+

X

5!
 
6!
 
2

Where u = (x - a)/h
Therefore, du/dx = 1/h

(d/dx) [y(u)] = {(d/du)(du/dx) [y(u)]} = {(d/du)[y(u)](1/h)} = [y'(u)]/h

Differentiating w.r.t. u

   
(2u - 1)
(D2y-1 + D2y0)
 
[3u2 - 3u + (1/2)]
 
+
y'(u) =
Dy0 +

X

+

 X (D3y-1)
   
2!
2
 
3!
 
                         
   
(4u3 - 6u2 - 2u + 2)
 
(D4y-2 + D4y-1)
   
   
X

+....  
   
4!
 
2
   

Q. 12. A portion of a table of sines is given below: (June 2002, June 99)

Angle in Radians Sine
0.25 0.2474
0.26 0.2571
0.27 0.2667
0.28 0.2764
0.29 0.2860

Find the derivative of this function at x = 0.27.

Solution. Here, we have to find out the derivative near the middle of the table. So, we use Bessel's formula.
The difference table is shown below:

u x f(x) D D2 D3 D4
-2
0.25
0.2474
0.0097
0.0096
0.0097
0.0096
-0.0001
0.0001
-0.0001
-0.0002
-0.0002
0
-1
0.26
0.2571
0
0.27
0.2667
1
0.28
0.2764
2
0.29
0.2860

a = 0.27, h = 0.01
u = (x - 0.27)/h
Therefore, du/dx = 1/h
(d/dx) [y(u)] = [y'(u)]/h .....(i)

   
(2u - 1)
(D2y-1 + D2y0)
 
[3u2 - 3u + (1/2)]
 
+
y'(u) =
Dy0 +

X

+

 X (D3y-1)
   
2!
2
 
3!
 
                         
   
(4u3 - 6u2 - 2u + 2)
 
(D4y-2 + D4y-1)
   
   
X

   
   
4!
 
2
   

Putting u = 0
y'(0) = Dy0 - [(1/4) X (D2y-1 + D2y0)] + [(1/12) X (D3y-1)] + [(1/24) X (D4y-2 + D4y-1)]
or y'(0) = 0.0097 - {(1/4) X [0.0001 + (-0.0001)]} + [(1/12) X (-0.0002)] + [(1/24) X 0]
or y'(0) = 0.0096

From equation (i)
(d/dx) [y(u)] = [y'(0)]/h
or y'(0.27) = (0.0096)/0.01
or y'(0.27) = 0.96

Q. 13. A portion of a table of a function f(x) is given below: (June 2000)

x

0.71

0.72

0.73 0.74 0.75 0.76

f(x)

0.2474

0.2571

0.2667 0.2764 0.2860 0.2910

Find the derivative of this function at x = 0.74.

Solution. The difference table is shown below:

u
x
f(x)
D
D2
D3
D4
D5
-3
0.71
0.2474
0.0097
0.0096
0.0097
0.0096
0.0050
-0.0001
0.0001
-0.0001
-0.0046
0.0002
-0.0002
-0.0045
-0.0004
-0.0043
-0.0039
-2
0.72
0.2571
-1
0.73
0.2667
0
0.74
0.2764
1
0.75
0.2860
2
0.76
0.2910


Differentiating w.r.t. u and putting u = 0, we get
y'(0) = Dy0 - [(1/4) X (D2y-1 + D2y0)] + [(1/12) X (D3y-1)] + [(1/24) X (D4y-2 + D4y-1)] - [(1/120) X (D5y-2)]
or y'(0) = 0.0096 - {(1/4) X [(-0.0001) + (-0.0046)]} + [(1/12) X (-0.0045)] + [(1/24) X (-0.0043)] - [(1/120) X (-0.0039)]
or y'(0) = 0.0103

Here, h = 0.01
Therefore, y'(0.74) = (0.0103)/0.01 = 1.03



Main Contents Page

© Universal Teacher Publications