(Derivatives at mid or near mid)
|
|
(y0 + y1)
|
|
|
|
(2u - 1)
|
|
|
+
|
|
[u(u - 1)]
|
|
(D2y-1
+ D2y0)
|
|
|
yu = |
|
+
|
|
X (Dy0) |
|
X
|
|
+
|
|
2
|
|
2
|
|
2!
|
|
2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{u[u - (1/2)](u - 1)}
|
|
|
|
|
[u(u2 - 1)(u -
2)]
|
|
(D4y-2
+ D4y-1)
|
|
|
X
(D3y-1)
|
+ |
|
X
|
|
3!
|
|
|
4!
|
|
2
|
+ |
|
{u[u - (1/2)](u2
- 1)(u - 2)}
|
|
|
|
|
[u(u2 - 1)(u2
- 2)(u - 3)]
|
|
(D6y-3
+ D6y-2)
|
|
+ ... |
|
X
(D5y-2)
|
+
|
|
X
|
|
5!
|
|
|
6!
|
|
2
|
Where u = (x - a)/h
Therefore, du/dx = 1/h
(d/dx) [y(u)] = {(d/du)(du/dx) [y(u)]} = {(d/du)[y(u)](1/h)}
= [y'(u)]/h
Differentiating w.r.t. u
|
|
|
(2u - 1)
|
|
(D2y-1
+ D2y0)
|
|
|
|
[3u2 - 3u + (1/2)]
|
|
|
+
|
y'(u) = |
Dy0
+
|
|
X
|
|
+
|
|
X (D3y-1) |
|
|
2!
|
|
2
|
|
3!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(4u3 - 6u2
- 2u + 2)
|
|
(D4y-2
+ D4y-1)
|
|
|
|
|
|
|
X
|
|
+.... |
|
|
|
4!
|
|
2
|
|
|
Q. 12. A portion of a table of sines is given
below: (June 2002, June 99)
Angle in Radians |
Sine |
0.25 |
0.2474 |
0.26 |
0.2571 |
0.27 |
0.2667 |
0.28 |
0.2764 |
0.29 |
0.2860 |
Find the derivative of this function at x = 0.27.
Solution. Here, we have to find out the derivative
near the middle of the table. So, we use Bessel's
formula.
The difference table is shown below:
u |
x |
f(x) |
D |
D2 |
D3 |
D4 |
-2
|
0.25
|
0.2474
|
0.0097
0.0096
0.0097
0.0096
|
-0.0001
0.0001
-0.0001
|
-0.0002
-0.0002
|
0
|
-1
|
0.26
|
0.2571
|
0
|
0.27
|
0.2667
|
1
|
0.28
|
0.2764
|
2
|
0.29
|
0.2860
|
a = 0.27, h = 0.01
u = (x - 0.27)/h
Therefore, du/dx = 1/h
(d/dx) [y(u)] = [y'(u)]/h .....(i)
|
|
|
(2u - 1)
|
|
(D2y-1
+ D2y0)
|
|
|
|
[3u2 - 3u + (1/2)]
|
|
|
+
|
y'(u) = |
Dy0
+
|
|
X
|
|
+
|
|
X (D3y-1) |
|
|
2!
|
|
2
|
|
3!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(4u3 - 6u2
- 2u + 2)
|
|
(D4y-2
+ D4y-1)
|
|
|
|
|
|
|
X
|
|
|
|
|
|
4!
|
|
2
|
|
|
Putting u = 0
y'(0) = Dy0
- [(1/4) X (D2y-1
+ D2y0)]
+ [(1/12) X (D3y-1)]
+ [(1/24) X (D4y-2
+ D4y-1)]
or y'(0) = 0.0097 - {(1/4) X [0.0001 + (-0.0001)]}
+ [(1/12) X (-0.0002)] + [(1/24) X 0]
or y'(0) = 0.0096
From equation (i)
(d/dx) [y(u)] = [y'(0)]/h
or y'(0.27) = (0.0096)/0.01
or y'(0.27) = 0.96
Q. 13. A portion of a table of a function
f(x) is given below: (June 2000)
x
|
0.71
|
0.72
|
0.73 |
0.74 |
0.75 |
0.76 |
f(x)
|
0.2474
|
0.2571
|
0.2667 |
0.2764 |
0.2860 |
0.2910 |
Find the derivative of this function at x = 0.74.
Solution. The difference table is shown below:
u
|
x
|
f(x)
|
D
|
D2
|
D3
|
D4
|
D5
|
-3
|
0.71
|
0.2474
|
0.0097
0.0096
0.0097
0.0096
0.0050
|
-0.0001
0.0001
-0.0001
-0.0046
|
0.0002
-0.0002
-0.0045
|
-0.0004
-0.0043
|
-0.0039
|
-2
|
0.72
|
0.2571
|
-1
|
0.73
|
0.2667
|
0
|
0.74
|
0.2764
|
1
|
0.75
|
0.2860
|
2
|
0.76
|
0.2910
|
Differentiating w.r.t. u and putting u = 0, we get
y'(0) = Dy0
- [(1/4) X (D2y-1
+ D2y0)]
+ [(1/12) X (D3y-1)]
+ [(1/24) X (D4y-2
+ D4y-1)]
- [(1/120) X (D5y-2)]
or y'(0) = 0.0096 - {(1/4) X [(-0.0001)
+ (-0.0046)]} + [(1/12) X (-0.0045)] + [(1/24) X (-0.0043)]
- [(1/120) X (-0.0039)]
or y'(0) = 0.0103
Here, h = 0.01
Therefore, y'(0.74) = (0.0103)/0.01 = 1.03
|