Q. 1. Write a FORTRAN statement for each of
the following mathematical expressions:
- z = ex + y + log ( x + y2)
(June 2002)
- z = [(ab)/(c + d)]2 (June
2002)
- z = [sin
( x + y2) + tan2 xy] (June
2002)
- a [(x + y)/z]3.5 (Dec.
2001)
- | sin X | + log (3X2
+ 5Y2) (Dec.
2001)
- X = [(ab)/(c + dk/m + k)] + a (June
2001)
- u = e| x2 - y2 |
(June 2001)
Ans.
- Z = EXP (X + Y) + LOG ( X + Y * * 2)
- Z = ((A * B)/(C + D)) * * 2
- Z = SQRT ((SIN (X + Y * * 2)) + (TAN * * 2 (X
* Y)))
- (A * (X + Y)/Z) * * 3.5
- ABS (SIN (X)) + LOG (SQRT (3 * X * * 2 + 5 * Y
* * 2))
- X = ((A * B)/(C + D * * K/M + K)) + A
- U = EXP (ABS (X * * 2 - Y * * 2))
- V = A * * (B * * C)
- (ix) X = A * * (Z + 1)
- X = ABS (Y - B)
- X = SQRT (Y + B)
- X = 1/(EXP (Y * * 2)/2)
- U = (LOG (X + Y) - TAN (X + N * Y)) * * 2
- V = EXP (X * Y) - ABS (X * * 2 - Y * * 2)
- W = SQRT ((X * * Y) * * Z)
- Z = TAN (3 * X - 2 * Y) + 4 * EXP (X * Y)
- Z = ABS (X * * 2 - Y * * 2) + SQRT (5 * X * *
2 + 8 * Y * * 2)
- Z = ((P + Q)/(R + S)) * * 3
- Z = EXP (X + Y) - SIN (X + N * Y)
- Z = ((A + B)/(C + D)) * * 3
- Z = SQRT (5 * X * * 2 + 8 * Y * * 2)
- Z = (COT * * 2 (X * * 2)) - LOG (X * Y)
- Z = ABS (X * * 2 - Y * * 2) + (6 * EXP (X * *
Y))
- Z = SQRT ((SIN * * 2 (X * Y)) + ((X * * Y) * *
Z))
|