Chapter 8

Q. 1. Write a FORTRAN statement for each of the following mathematical expressions:

  1. z = ex + y + log ( x + y2) (June 2002)
  2. z = [(ab)/(c + d)]2 (June 2002)
  3. z = [sin ( x + y2) + tan2 xy] (June 2002)
  4. a [(x + y)/z]3.5 (Dec. 2001)
  5. | sin X | + log (3X2 + 5Y2) (Dec. 2001)
  6. X = [(ab)/(c + dk/m + k)] + a (June 2001)
  7. u = e| x2 - y2 | (June 2001)
  1. BC
    (viii) v = A
    (June 2001)
  2. x = az + 1 (Dec. 2000)
  3. x = | y - b | (Dec. 2000)
  4. x = (y + b) (Dec. 2000)
  5. x = e-y2/2 or x = 1/ey2/2 (Dec. 2000)
  6. u = (log (x + y) - tan (x + ny))2 (Jan. 2001)
  7. v = exy - | x2 - y2 | (Jan. 2001)
  8. w = ((x)y)z (Jan. 2001)
  9. z = tan (3x - 2y) + 4exy (June 2000)
  10. z = | x2 - y2 | + (5X2 + 8Y2) (June 2000)
  11. z = [(p + q)/(r + s)]3 (June 2000)
  12. z = ex + y - sin ( x + ny) (Dec. 99)
  13. z = [(a + b)/(c + d)]3 (Dec. 99)
  14. z = (5X2 + 8Y2) (Dec. 99)
  15. z = cot2 (x2) - log x.y (Dec. 2002)
  16. z = | x2 - y2 | + 6ex.y (Dec. 2002)
  17. z = sin2 (xy) + ((x)y)z (Dec. 2002)

Ans.

  1. Z = EXP (X + Y) + LOG ( X + Y * * 2)
  2. Z = ((A * B)/(C + D)) * * 2
  3. Z = SQRT ((SIN (X + Y * * 2)) + (TAN * * 2 (X * Y)))
  4. (A * (X + Y)/Z) * * 3.5
  5. ABS (SIN (X)) + LOG (SQRT (3 * X * * 2 + 5 * Y * * 2))
  6. X = ((A * B)/(C + D * * K/M + K)) + A
  7. U = EXP (ABS (X * * 2 - Y * * 2))
  8. V = A * * (B * * C)
  9. (ix) X = A * * (Z + 1)
  10. X = ABS (Y - B)
  11. X = SQRT (Y + B)
  12. X = 1/(EXP (Y * * 2)/2)
  13. U = (LOG (X + Y) - TAN (X + N * Y)) * * 2
  14. V = EXP (X * Y) - ABS (X * * 2 - Y * * 2)
  15. W = SQRT ((X * * Y) * * Z)
  16. Z = TAN (3 * X - 2 * Y) + 4 * EXP (X * Y)
  17. Z = ABS (X * * 2 - Y * * 2) + SQRT (5 * X * * 2 + 8 * Y * * 2)
  18. Z = ((P + Q)/(R + S)) * * 3
  19. Z = EXP (X + Y) - SIN (X + N * Y)
  20. Z = ((A + B)/(C + D)) * * 3
  21. Z = SQRT (5 * X * * 2 + 8 * Y * * 2)
  22. Z = (COT * * 2 (X * * 2)) - LOG (X * Y)
  23. Z = ABS (X * * 2 - Y * * 2) + (6 * EXP (X * * Y))
  24. Z = SQRT ((SIN * * 2 (X * Y)) + ((X * * Y) * * Z))


Main Contents Page

© Universal Teacher Publications