In this section, we provide an example of separable programming.
Maximize f0 (x1, x2) = 5x1 - x12 + 3x2 - x22
subject to
f1 (x1, x2) = 2x14 + x2 ≤ 32
f2 (x1, x2) = x1 + 2x22 ≤ 32
x1, x2 ≥ 0
The break points of x1 are 0, 1, 2 and x2 are
0, 1, 2, 3, 4.
Solution.
f01 (x1) = 5x1 - x12
f11 (x1) = 2x14
f21 (x1) = x1
f02 (x2) = 3x2 - x22
f12 (x2) = x2
f22 (x2) = 2x22
a1k | f01(a1k) | f11(a1k) | f21(a1k) | Weight |
---|---|---|---|---|
0 | 0 | 0 | 0 | W11 |
1 | 4 | 2 | 1 | W12 |
2 | 6 | 32 | 2 | W13 |
a2k | f02(a2k) | f12(a2k) | f22(a2k) | Weight |
---|---|---|---|---|
0 | 0 | 0 | 0 | W21 |
1 | 2 | 1 | 2 | W22 |
2 | 2 | 2 | 8 | W23 |
3 | 0 | 3 | 18 | W24 |
4 | -4 | 4 | 32 | W25 |
The linear model can be written as:
Maximize 0W11 + 4W12 + 6W13 + 0W21 + 2W22 + 2W23 + 0W24 - 4W25
subject to
0W11 + 2W12 + 32W13 + 0W21 + W22 + 2W23 + 3W24 + 4W25 + S1 = 32
0W11 + W12 + 2W13 + 0W21 + 2W22 + 8W23 + 18W24 + 32W25 + S2 = 32
W11 + W12 + W13 = 1
W21 + W22 + W23 + W24 + W25 = 1
Wjk ≥ 0.
Recall that for any j not two Wjk can be positive; and if two are positive they must be adjacent. The successive simplex tables are given below:
Table 1
cj | 0 | 4 | 6 | 0 | 2 | 2 | 0 | -4 | 0 | 0 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cB | Basic Variables B | W11 | W12 | W13 | W21 | W22 | W23 | W24 | W25 | S1 | S2 | Solution Values b=( XB) |
0 | S1 | 0 | 2 | 32 | 0 | 1 | 2 | 3 | 4 | 1 | 0 | 32 |
0 | S2 | 0 | 1 | 2 | 0 | 2 | 8 | 18 | 32 | 0 | 1 | 32 |
0 | W11 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | W21 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
zj-cj | 0 | -4 | -6 | 0 | -2 | -2 | 0 | 4 | 0 | 0 |
W11 departs and W13 enters.
Table 2
cj | 0 | 4 | 6 | 0 | 2 | 2 | 0 | -4 | 0 | 0 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cB | Basic Variables B | W11 | W12 | W13 | W21 | W22 | W23 | W24 | W25 | S1 | S2 | Solution Values b=( XB) |
0 | S1 | -32 | -30 | 0 | 0 | 1 | 2 | 3 | 4 | 1 | 0 | 0 |
0 | S2 | -2 | -1 | 0 | 0 | 2 | 8 | 18 | 32 | 0 | 1 | 30 |
6 | W13 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | W21 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
zj-cj | 6 | 2 | 0 | 0 | -2 | -2 | 0 | 4 | 0 | 0 |
S1 is replaced by W22. This is possible since W21 is a basic variable.
Table 3
cj | 0 | 4 | 6 | 0 | 2 | 2 | 0 | -4 | 0 | 0 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cB | Basic Variables B | W11 | W12 | W13 | W21 | W22 | W23 | W24 | W25 | S1 | S2 | Solution Values b=( XB) |
2 | W22 | -32 | -30 | 0 | 0 | 1 | 2 | 3 | 4 | 1 | 0 | 0 |
0 | S2 | 62 | 59 | 0 | 0 | 0 | 4 | 12 | 24 | -2 | 1 | 30 |
6 | W13 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | W21 | 32 | 30 | 0 | 1 | 0 | -1 | -2 | -3 | -1 | 0 | 1 |
zj-cj | -58 | -58 | 0 | 0 | 0 | 2 | 6 | 12 | 2 | 0 |
W21 departs and W12 enters.
Table 4
cj | 0 | 4 | 6 | 0 | 2 | 2 | 0 | -4 | 0 | 0 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cB | Basic Variables B |
W11 | W12 | W13 | W21 | W22 | W23 | W24 | W25 | S1 | S2 | Solution Values b=( XB) |
2 | W22 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | S2 | -14/15 | 0 | 0 | -59/30 | 0 | 179/30 | 239/15 | 299/10 | -1/30 | 1 | 841/30 |
6 | W13 | -1/15 | 0 | 1 | -1/30 | 0 | 1/30 | 1/15 | 1/10 | 1/30 | 0 | 29/30 |
4 | W12 | 16/15 | 1 | 0 | 1/30 | 0 | -1/30 | -1/15 | -1/10 | -1/30 | 0 | 1/30 |
zj-cj | 58/15 | 0 | 0 | 29/15 | 0 | 1/15 | 32/15 | 31/5 | 1/15 | 0 |
Thus, the optimum values of the weights are:
W12 = 1/30, W13 = 29/30
& W22 = 1
The optimum values of the decision variables are:
x1 = a1k W1k = a13 W13 = 2 X 29/30 = 1.9333 = 1.93 (approx.)
x2 = a2k W2k = a22 W22 = 1 X 1 = 1
The maximum value of the objective function is
5 X 1.93 - (1.93)2 + 3 X 1 - (1)2 = 7.9251