Maximize z = c1x1 + c2x2 + c3x3 + .........+ cnxn
subject to
a11x1 + a12x2 + a13x3 + .........+ a1nxn ≤
b1
a21x1 + a22x2 + a23x3 + .........+ a2nxn ≤
b2
.........................................................................
am1x1 + am2x2 + am3x3 + .........+ amnxn ≤
bm
x1, x2,....., xn≥
0
Where:
cj (j = 1, 2, ...., n) in the objective function are called
the cost or profit coefficients.
bi (i = 1, 2, ...., m) are called resources.
aij (i = 1, 2, ...., m; j = 1, 2, ...., n) are called technological
coefficients or input-output coefficients.
Introducing slack variables to convert inequalities to equalities
a11x1 + a12x2 + a13x3 + .........+ a1nxn + s1 = b1
a21x1 + a22x2 + a23x3 + .........+ a2nxn + s2 = b2
..............................................................................
am1x1 + am2x2 + am3x3 + .........+ amnxn + sm = bm
x1, x2,....., xn≥ 0
s1, s2,....., sm ≥
0
An initial basic feasible solution is obtained by setting
x1 = x2 =........ = xn = 0
s1 =
b1
s2 =
b2
..............
sm =
bm
The initial simplex table is formed by writing out the coefficients and constraints of a LPP in a systematic tabular form. The following table shows the structure of a simplex table.
cj | c1 | c2 | c3 | --- | cn | ||
---|---|---|---|---|---|---|---|
cB | Basic variables B |
x1 | x2 | x3 | --- | xn | Solution values b (=XB) |
cB1 | x1 | a11 | a12 | a13 | --- | a1n | b1 |
cB2 | x2 | a21 | a22 | a23 | --- | a2n | b2 |
cB3 | x3 | a31 | a32 | a33 | --- | a3n | b3 |
--- | ----- | ---- | ---- | ----- | --- | ---- | ----- |
cBm | xn | am1 | am2 | am3 | --- | amn | bm |
zj-cj | z1-c1 | z2-c2 | z3-c3 | --- | zn-cn |
Where:
cj = coefficients of the variables (m + n) in the objective
function.
cB = coefficients of the current basic variables in the objective
function.
B = basic variables in the basis.
XB = solution values of the basic variables.
zj-cj = index row.