Big M Simplex Method

Let's solve the following linear programming (LP) example with the help of this method.

We will use the same process as used in previous example.

Example 1, Example 2

example Big M Simplex Method Example: LPP

Maximize z = -4x1 - 2x2

subject to

3x1 + x2 ≥ 27
x1 + x2 ≥ 21
x1 + 2x2 ≥ 30

x1, x2 ≥ 0

Solution.

By introducing surplus and artificial variables, the standard form of LPP becomes

Maximize z = -4x1 - 2x2 + 0x3 + 0x4 + 0x5 – MA1 – MA2 – MA3

3x1 + x2 - x3 + A1 = 27
x1 + x2 - x4 + A2 = 21
x1 + 2x2 - x5 + A3 = 30

x1 ,x2, x3, x4, x5, A1, A2 ≥ 0

Where:
x4 and x5 are surplus variables
A1 and A2 are artificial variables.

Table 1

On small screens, scroll horizontally to view full calculation

  cj -4 -2 0 0 0 –M –M –M  
cB Basic variables
B
x1 x2 x3 x4 x5 A1 A2 A3 Solution values
b (= XB)
–M A1 3 1 -1 0 0 1 0 0 27
-M A2 1 1 0 -1 0 0 1 0 21
–M A3 1 2 0 0 -1 0 0 1 30
zj–cj   -5M + 4 -4M + 2 M M M 0 0 0  

As -5M < -4M, x1 becomes a basic variable in the next iteration
Key column = x1 column.
Minimum (27/3, 21/1, 30/1) = 9
Key row = A1 row
Pivot element = 3.
A1 departs and x1 enters.

Table 2

  cj -4 -2 0 0 0 –M –M  
cB Basic variables
B
x1 x2 x3 x4 x5 A2 A3 Solution values
b (= XB)
–4 x1 1 1/3 -1/3 0 0 0 0 9
-M A2 0 2/3 1/3 -1 0 1 0 12
–M A3 0 5/3 1/3 0 -1 0 1 21
zj–cj   0 -7M/3 + 2/3 -2M/3 - 4/3 M M 0 0  

Table 3

Use Horizontal Scrollbar to View Full Table Calculation

  cj -4 -2 0 0 0 –M  
cB Basic variables
B
x1 x2 x3 x4 x5 A2 Solution values
b (= XB)
–4 x1 1 0 -2/5 0 1/5 0 24/5
–M A2 0 0 1/5 -1 2/5 1 18/5
-2 x2 0 1 1/5 0 -3/5 0 63/5
zj–cj   0 0 -M/5 + 6/5 M -2M/5 + 2/5 0  

Final Optimal Table: Big M Simplex Method

  cj -4 -2 0 0 0  
cB Basic variables
B
x1 x2 x3 x4 x5 Solution values
b (= XB)
–4 x1 1 0 -1/2 1/2 0 3
0 x5 0 0 1/2 -5/2 1 9
-2 x2 0 1 1/2 -3/2 0 18
zj–cj   0 0 1 1 0  

The optimal solution is

x1 = 3, x2 = 18
z = -4 X 3 - 2 X 18 = -48

Share this article with your friends