In the previous section, we provided the steps in MODI method (modified distribution method) to solve a transportation problem.
In this section, we provide an example. Let's solve the following example:
Consider the transportation problem presented in the following table.
Distribution centre | ||||||
---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | Supply | ||
Plant | P1 | 19 | 30 | 50 | 12 | 7 |
P2 | 70 | 30 | 40 | 60 | 10 | |
P3 | 40 | 10 | 60 | 20 | 18 | |
Requirement | 5 | 8 | 7 | 15 |
Determine the optimal solution of the above problem.
Solution.
An initial basic feasible solution is obtained by Matrix Minimum Method and is shown in table 1.
Table 1
Distribution centre | ||||||
---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | Supply | ||
Plant | P1 | 19 | 30 | 50 | 7 | |
P2 | 30 | 60 | 10 | |||
P3 | 60 | 18 | ||||
Requirement | 5 | 8 | 7 | 15 |
12 X 7 + 70 X 3 + 40 X 7 + 40 X 2 + 10 X 8 + 20 X 8 = Rs. 894.
Calculating ui and vj using ui + vj = cij
Substituting u1 = 0, we get
u1 + v4 = c14 ⇒
0 + v4 = 12 or v4 = 12
u3 + v4 = c34 ⇒
u3 + 12 = 20 or u3 = 8
u3 + v2 = c32 ⇒
8 + v2 = 10 or v2 = 2
u3 + v1 = c31 ⇒
8 + v1 = 40 or v1 = 32
u2 + v1 = c21 ⇒
u2 + 32 = 70 or u2 = 38
u2 + v3 = c23 ⇒
38 + v3 = 40 or v3 = 2
Table 2
Distribution centre | |||||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | Supply | ui | ||
Plant | P1 | 19 | 30 | 50 | 7 | 0 | |
P2 | 30 | 60 | 10 | 38 | |||
P3 | 60 | 18 | 8 | ||||
Requirement | 5 | 8 | 7 | 15 | |||
vj | 32 | 2 | 2 | 12 |
Calculating opportunity cost using cij ( ui + vj )
Unoccupied cells | Opportunity cost |
---|---|
(P1, D1) | c11 ( u1 + v1 ) = 19 (0 + 32) = 13 |
(P1, D2) | c12 ( u1 + v2 ) = 30 (0 + 2) = 28 |
(P1, D3) | c13 ( u1 + v3 ) = 50 (0 + 2) = 48 |
(P2, D2) | c22 ( u2 + v2 ) = 30 (38 + 2) = 10 |
(P2, D4) | c14 ( u2 + v4 ) = 60 (38 + 12) = 10 |
(P3, D3) | c33 ( u3 + v3 ) = 60 (8 + 2) = 50 |
Table 3
Distribution centre | |||||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | Supply | ui | ||
Plant | P1 | 7 | 0 | ||||
P2 | 10 | 38 | |||||
P3 | 18 | 8 | |||||
Requirement | 5 | 8 | 7 | 15 | |||
vj | 32 | 2 | 2 | 12 |
Now choose the smallest (most) negative value from opportunity cost (i.e., 13) and draw a closed path from P1D1. The following table shows the closed path.
Table 4
Choose the smallest value with a negative position on the closed path(i.e., 2), it indicates the number of units that can be shipped to the entering cell. Now add this quantity to all the cells on the corner points of the closed path marked with plus signs and subtract it from those cells marked with minus signs. In this way, an unoccupied cell becomes an occupied cell.
Now again calculate the values for ui & vj and opportunity cost. The resulting matrix is shown below.
Table 5
Distribution centre | |||||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | Supply | ui | ||
Plant | P1 | 7 | 0 | ||||
P2 | 10 | 51 | |||||
P3 | 18 | 8 | |||||
Requirement | 5 | 8 | 7 | 15 | |||
vj | 19 | 2 | 11 | 12 |
Choose the smallest (most) negative value from opportunity cost (i.e., 23). Now draw a closed path from P2D2 .
Table 6
Now again calculate the values for ui & vj and opportunity cost
Distribution centre | |||||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | Supply | ui | ||
Plant | P1 | 7 | 0 | ||||
P2 | 10 | 28 | |||||
P3 | 18 | 8 | |||||
Requirement | 5 | 8 | 7 | 15 | |||
vj | 19 | 2 | 12 | 12 |
Since all the current opportunity costs are nonnegative, this is the optimal solution. The minimum transportation cost is: 19 X 5 + 12 X 2 + 30 X 3 + 40 X 7 + 10 X 5 + 20 X 13 = Rs. 799