Solving the dual problem.
Maximize z = 40w1 + 50w2
subject to
2w1 + 3w2 ≤
3
4w1 + 2w2 ≤ 3
w1, w2 ≥ 0
After adding slack variables, we have
Maximize z = 40w1 + 50w2 + 0x3 + 0x4
2w1 + 3w2 + x3 = 3
4w1 + 2w2 + x4 = 3
w1, w2, x3, x4 ≥
0
Where x3 and x4 are slack variables.
w1= 0, w2 = 0, z = 0
x3 = 3, x4 = 3
cj | 40 | 50 | 0 | 0 | ||
---|---|---|---|---|---|---|
cB | Basic variables B |
w1 | w2 | x3 | x4 | Solution values b (=XB) |
0 | x3 | 2 | 3 | 1 | 0 | 3 |
0 | x4 | 4 | 2 | 0 | 1 | 3 |
zj-cj | -40 | -50 | 0 | 0 |
Table 2
cj | 40 | 50 | 0 | 0 | ||
---|---|---|---|---|---|---|
cB | Basic variables B |
w1 | w2 | x3 | x4 | Solution values b (=XB) |
50 | w2 | 2/3 | 1 | 1/3 | 0 | 1 |
0 | x4 | 8/3 | 0 | -2/3 | 1 | 1 |
zj-cj | -20/3 | 0 | 50/3 | 0 |
Table 3
cj | 40 | 50 | 0 | 0 | ||
---|---|---|---|---|---|---|
cB | Basic variables B |
w1 | w2 | x3 | x4 | Solution values b (=XB) |
50 | w2 | 0 | 1 | 1/2 | -1/4 | 3/4 |
40 | w1 | 1 | 0 | -1/4 | 3/8 | 3/8 |
zj-cj | 0 | 0 | 15 | 5/2 |
The optimal solution is:
w1 = 3/8, w2 = 3/4
z = 40 X 3/8 + 50 X 3/4= 105/2.
In case of primal problem, you noted that the values of zj-cj under the surplus variables x3 and x4 were 3/8 and 3/4. In case of dual problem, these values are the optimal values of dual variables w1 and w2.
Further, the values of the objective functions in both the problems are same (i.e., 105/2)