Now I will show you an example of primal problem.
Minimize z = 3x1 + 3x2
subject to
2x1 + 4x2 ≥
40
3x1 + 2x2 ≥ 50
x1, x2 ≥ 0
Solution.
We use the M method to solve this problem.
After adding surplus & artificial variables, we have
Minimize z = 3x1 + 3x2 + 0x3 + 0x4 + MA1 + MA2
2x1 + 4x2 - x3 + A1 = 40
3x1 + 2x2 - x4 + A2 = 50
x1, x2, x3, x4, A1,
A2 ≥ 0
Where:
A1 and A2 are artificial variables.
x3 and x4 are surplus variables.
x1 = 0, x2 = 0, x3 = 0, x4 = 0
A1 = 40, A2 = 50
cj | 3 | 3 | 0 | 0 | M | M | ||
---|---|---|---|---|---|---|---|---|
cB | Basic variables B |
x1 | x2 | x3 | x4 | A1 | A2 | Solution values b (=XB) |
M | A1 | 2 | 4 | -1 | 0 | 1 | 0 | 40 |
M | A2 | 3 | 2 | 0 | -1 | 0 | 1 | 50 |
zj-cj | 5M - 3 | 6M - 3 | -M | -M | 0 | 0 |
Choose the highest positive value from index row.
As 6M > 5M, x2 becomes a basic variable in the
next iteration.
Minimum (40/4, 50/2) = (10, 25) = 10
Key Row = A1 row.
Pivot element = 4.
A1 departs and x2 enters.
Table 2
cj | 3 | 3 | 0 | 0 | M | ||
---|---|---|---|---|---|---|---|
cB | Basic variables B |
x1 | x2 | x3 | x4 | A2 | Solution values b (=XB) |
3 | x2 | 1/2 | 1 | -1/4 | 0 | 0 | 10 |
M | A2 | 2 | 0 | 1/2 | -1 | 1 | 30 |
zj-cj | 2M - 3/2 | 0 | M/2 - 3/4 | -M | 0 |
Table 3
cj | 3 | 3 | 0 | 0 | ||
---|---|---|---|---|---|---|
cB | Basic variables B |
x1 | x2 | x3 | x4 | Solution values b (=XB) |
3 | x2 | 0 | 1 | -3/8 | 1/4 | 5/2 |
3 | x1 | 1 | 0 | 1/4 | -1/2 | 15 |
zj-cj | 0 | 0 | -3/8 | -3/4 |
The optimal solution is
x1 = 15, x2 = 5/2
z = 3 X 15 + 3 X 5/2= 105/2.